

MEQ431

Adjustable Precision Shunt Regulator

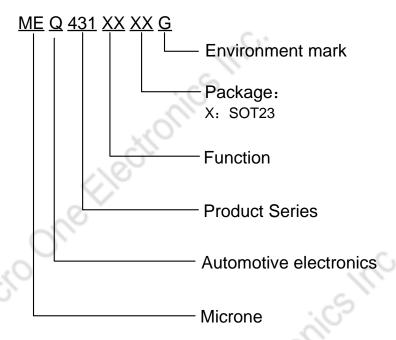
General Description

The MEQ431 series ICs are three-terminal adjustable shunt regulators with guaranteed thermal stability over a full operation range. These ICs feature sharp turn-on characteristics, low temperature coefficient and low output impedance, which make them ideal substitutes for Zener diodes in applications such as switching power supply, charger and other adjustable regulators.

The MEQ431 voltage type is 36V. The output voltage can be set to any value between V_{REF} (2.5V) and the corresponding maximum cathode voltage.

Sarijing Micro One Electronics Inc. The MEQ431 precision reference is offered in three band gap tolerance: ±0.5%.

Features


- Programmable Precise Output Voltage from 2.5V to 36V
- Very Accurate Reference Voltage: Typical 0.15%
- High Stability under Capacitive Load
- Low Temperature Deviation: Typical 4.5mV
- Low Equivalent Full-range Temperature Coefficient with 20PPM/℃ Typical
- Low Dynamic Output Resistance: Typical 0.2Ω
- Sink Current Capacity from 1mA to 100 mALow **Output Noise**
- Wide Operating Range of -40 to 125°C

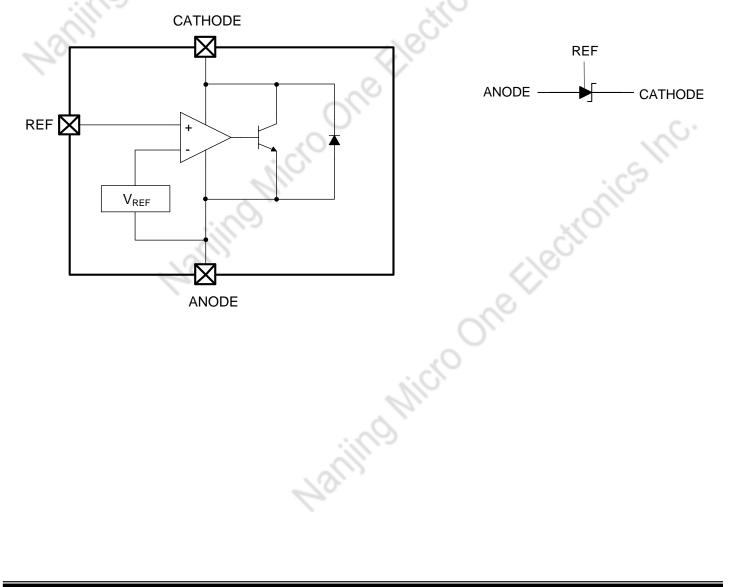
Typical Application

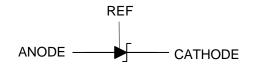
- Charger
- Voltage Adapter
- Switching Power Supply
- Graphic Card
- Precision Voltage Reference

Selection Guide

product series	product description		
MEQ431AXG	V _{REF} =2.5V±0.5%; Package: SOT23		

NOTE: If you need other voltage and package, please contact our sales staff.


PIN Configuration



Pin Assignment

Pin Number	Symbol	Functions
1	R	reference
2	. A	anode
3	К	cathode

Block Diagram and symbol

Absolute Maximum Ratings

Parameter	Symbal	Rating	Unit
Cathode voltage	V _{KA}	36	V
Cathode current range (continuous)	I _{KA}	-100~+130	mA
Reference input current range	I _{REF}	10	mA
Power Dissipation	P_{D}	0.4	W
Junction temperature	TJ	-40~+150	$^{\circ}$
Storage Temperature range	T _{STG}	-55~+150	$^{\circ}$
Package thermal impedance	Д	330	°C/W
(Junction to air)	θ_{JA}	330	C/VV

Note: Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Cathode Voltage	V_{KA}	V_{REF}	36	V
Cathode Current	I _{KA}	1.0	100	mA
Operating Ambient Temperature Range		-40	125	$^{\circ}$ C

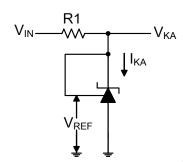
Electrical Characteristics (T_A=25°C ,unless otherwise noted)

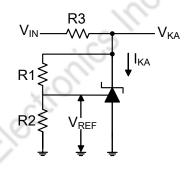
Parameter	Symbol	Conditions		Min	Тур.	Max	Unit	Test circuit
Reference voltage	V_{REF}	VKA	_A =V _{REF,} I _{KA} =10mA	2.488	2.50	2.512	V	Fig.1
Deviation of		V _{KA} =V _{REF.}	0 to 70℃	-	7	16		
reference voltage over-temperature	ΔV_REF	I _{KA} =10mA	-40 to 150℃	-	14	34	mV	Fig.1
Dynamic impedance	Z _{KA}	$V_{KA}=V_{REF}$, $I_{KA}=1$ to 100mA, $f \le 1.0$ KHz) -	0.15	0.5	Ω	Fig.1
Minimum cathode current for regulation	I _{KA} (MIN)		V _{KA} =V _{REF}	100	0.4	0.6	mA	Fig.1
Ratio of change in			$\Delta V_{KA} = 10V$ to V_{REF}	-	-1.4	-2.7		
reference voltage to the change in cathode voltage	$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	I _{KA} =10mA	$\Delta V_{KA} = 36V$ to 10V	-	-1.0	-2.0	mV/V	Fig.2
Reference current	I _{REF}	I_{KA} =10mA, R1=10KΩ, R2= ∞			2	4	μΑ	Fig.2
Deviation of reference over full temperature range	ΔI_{REF}	I _{KA} =10mA, R1=10KΩ, R2= $^{\infty}$,T _A =40 to 150 $^{\circ}$ C			0.8	2.5	μΑ	Fig.2
Off-state cathode current	I _{KA} (OFF)	V	KA=36V, V _{REF} =0		0.1	0.5	μA	Fig.3

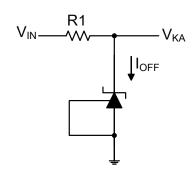
Note: The dynamic impedance is defined as: $|Z_{KA}| = \triangle V_{KA} / \triangle I_{KA}$

Test Circuit

Reference Current IREF (µA)
0 G G C

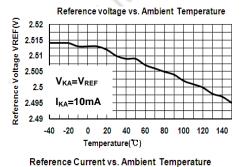

-40 -20

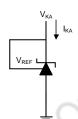

R1=10KΩ

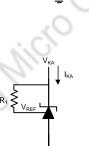

I_{KA}=10mA

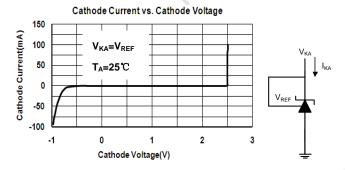
20 40 60

Temperature ($^{\circ}$ C)

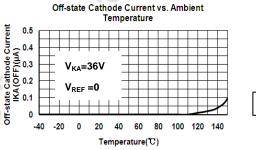

$$V_{KA} = V_{REF} \left(1 + \frac{R1}{R2} \right) + I_{REF} R1$$

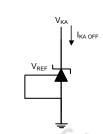

Fig.1: for $V_{KA} = V_{REF}$

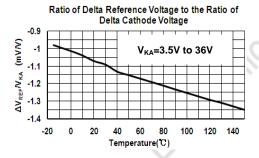

Fig.2: for $V_{KA} > V_{REF}$

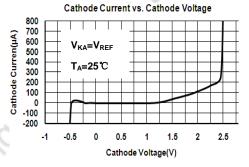

Fig.3: for I_{OFF}

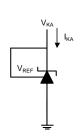
Typical Performance Characteristics

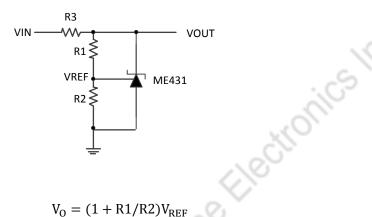







80


100 120 140



Typical Application

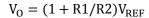
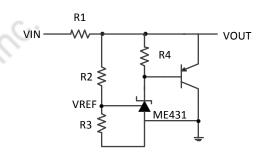



Fig.4: Shunt Regulator

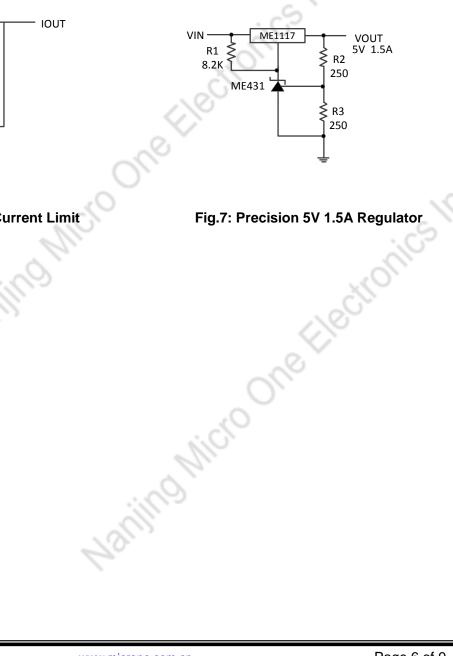
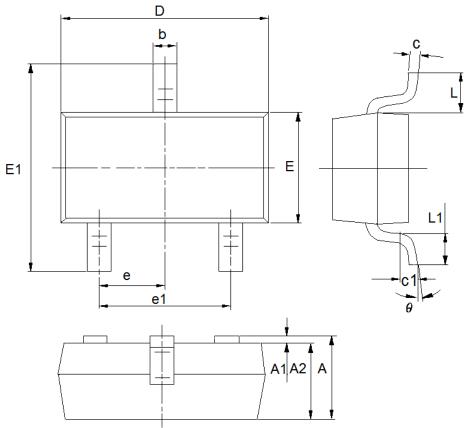

$$I_{OUT} = V_{REF}/R2 + I_{KA}$$

Fig.6: Current Source or Current Limit

$$V_0 = (1 + R2/R3)V_{REF}$$


Fig.5: High Current Shunt Regulator

Packaging Type

SOT23

Millime		eters	Inc	hes
DIM	Min	Max	Min	Max
Α	0.9	1.15	0.0354	0.0453
A1	0	0.14	0.0000	0.0055
A2	0.9	1.05	0.0354	0.0413
b	0.28	0.52	0.0110	0.0205
С	0.07	0.23	0.0028	0.0091
D	2.8	3.0	0.1102	0.1181
e1	1.8	2.0	0.0709	0.0787
E	1.2	1.4	0.0472	0.0551
E1	2.2	2.6	0.0866	0.1024
е	0.95(TYP)		0.0374	4(TYP)
L	L 0.55(TYP)		0.0217	7(TYP)
L1	0.25	0.55	0.0098	0.0217
θ	0	8°	0.0000	8°
c1 0.25(TYP)		0.0098	B(TYP)	

Wariing Micro One Electronics Inc. Warijing Micro One Electronics Inc. Wariing Micro One Electronics Inc.

 The contents of this document will be updated with the product's improvement without prior notice. Please consult our sales staff before using this document to ensure that you are using the latest version.

One Electronics Inc.

- The application circuit examples described in this document are only used to indicate the representative use of the product and do not guarantee the design of mass production.
- Please use this product within the limits stated in this document. We will not be responsible for any damage caused by improper use.
- The products described in this document are not allowed to be used in equipment or devices that affect the human body without the written permission of our company, including but not limited to: health equipment, medical equipment, disaster prevention equipment, fuel control equipment, automobile equipment, aviation equipment and vehicle equipment.
- Although our company has always been committed to improving product quality and reliability, semiconductor products have a certain probability of malfunction or wrong work. To prevent personal injury or property damage caused by such accidents, please pay full attention to safety design, for example: Alternate design, fire protection design, and prevention of wrong action design.
- When exporting this product or this document overseas, you should abide by applicable import and export control laws.
- Copying or reprinting part or all of this document in any form without the permission of our company is strictly prohibited.